PUBLICATIONS
Zebrafish Research
-
Loss of Active Neurogenesis in the Adult Shark Retina
Hernández-Núñez I., Robledo D., Mayeur H., Mazan S., Sánchez L., Adrio F., Barreiro-Iglesias A. & Candal E. 2021.
Frontiers in Cell and Developmental Biology, 9: 628721. (doi: 10.3389/fcell.2021.628721)
A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system
Villamayor P.R., Arana A.J., Coppel C., Ortiz-Leal I., Torres M.V., Sánchez-Quinteiro P. & Sánchez L. 2021.
Scientific Reports, 11: 8865 (doi.org/10.1038/s41598-021-88317-1)
Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model
Saraiva S.M., Gutiérrez-Lovera C., Martínez-Val J., Lores S., Bouza B.L., Díez-Villares S., Alijas S., Pensado-López A., Vázquez-Ríos A.J., Sánchez L. & de la Fuente M. 2021.
Scientific Reports, 11: 9873 (doi.org/10.1038/s41598-021-87968-4)
Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development
Steeman T.J., Rubiolo J.A., Sánchez L.E., Calcaterra N.B. & Weiner A.M.J. 2021.
Genes 2021, 12(7), 1023; (https://doi.org/10.3390/genes12071023)
Zebrafish models to test new nanomaterials: focus on macrophages and therapeutic manipulation of the innate immune system.
Pensado-López A., Fernández J., Reimunde P., Crecente-Campo J., Alonso M.J., Sánchez L. & Torres Andón F. 2021.
Nanomaterials (Accepted)
Morphological abnormalities and gene expression changes caused by high incubation temperaturas in zebrafish xenografts with human cancer cells
Cabezas-Sáinz P., Coppel C., Pensado-López A., Fernández P., Muinelo-Romay L., López-López R., Rubiolo J.A. & Sánchez L. 2021. Morphological abnormalities and gene expression changes caused by high incubation temperaturas in zebrafish xenografts with human cancer cells.
Genes 12: 113. (doi.org/10.3390/genes12010113) 2021
Zebrafish models of autosomal dominant ataxias.
Quelle-Regaldie A., Sobrido-Cameán D., Barreiro-Iglesias A., Sobrido M.J. & Sánchez L. 2021. Zebrafish models of autosomal recessive ataxias.
Cells, 10: 836. (doi.org/10.3390/cells10040836) 2021
Cellular and molecular mechanisms underlying glioblastoma and zebrafish models for the discovery of new treatments
Reimunde P., Pensado-López A., Carreira Crende M., Lombao Iglesias V., Sánchez L., Torrecilla-Parra M., Ramírez C.M., Anfray C. & Torres Andón F. 2021. Cellular and molecular mechanisms underlying glioblastoma and zebrafish models for the discovery of new treatments..
Cancers, 13: 1087. (doi.org/10.3390/cancers13051087) 2021
Inhibition of mitochondrial dynamics preferentially targets pancreatic cancer cells with enhanced tumorigenic and invasive potential.
Courtois S., de Luxán-Delgado B., Penin-Peyta L., Royo-García A., Parejo-Alonso B., Jagust P. Alcalá S., Rubiolo J.A., Sánchez L., Sáinz Jr. B., Heeschen C. & Sancho P. 2021. Inhibition of mitochondrial dynamics preferentially targets pancreatic cancer cells with enhanced tumorigenic and invasive potential.
Cancers, 13: 698. (doi.org/10.3390/cancers13040698) 2021
Experimental models to study Autism Spectrum Disorders hiPSCs, rodents and zebrafish.
Pensado-López A., Veiga-Rúa S., Carracedo A., Allegue C. & Sánchez L.
Genes, 11: 1376 (doi: 10.3390/genes11111376). 2020
Circulating tumor cells characterization revealed TIMP1 as a bivek therapeutic target in ovarian cancer
Abreu M., Cabezas-Sáinz P., Alonso-Alconada L., Ferreirós A., Mondelo-Macía P., Lago-Lestón R.M., Abalo A., Díaz E., Palacios-Zambrano S., Rojo-Sebastián A., López-López R., Sánchez L., Moreno-Bueno G. & Muinelo-Romay L.
Cells, 9: 1218. (doi: 10.3390/cells9051218) 2020
Exploiting oxidative phosphorylation to promete the stem and immunoevasive properties of pancreatic cancer stem cells
Valle S., Alcalá S., Martin-Hijano L., Cabezas-Sáinz P., Navarro D., Ramos Muñoz E., Yuste L., Tiwary K., Walter K., Ruíz-Cañas L., Alonso-Nocelo M., Rubiolo J.A., González-Arnay E., Heeschen C., García-Bermejo L., Hermann P.C., Sánchez L., Sancho P., Fernández-Moreno M.A. & Sáinz B. Jr.
Nature Communications, 11:5265 (https://doi.org/10.1038/s41467-020-18954-z) 2020
Developmentally-programmed celular senescence is conserved and widespread in zebrafish.
Da Silva-Álvarez S., Guerra-Varela J., Sobrido-Cameán D., Quelle A., Barreiro-Iglesias A., Sánchez L. & Collado M.
Aging, 12: 17895-17901. (https://doi.org/10.18632/aging.103968) 2020
Modeling cancer using zebrafish xenografts: drawbacks for mimicking the human microenvironment.
Cabezas-Sáinz P., Pensado-López A., Sáinz Jr. B. & Sánchez L.
Cells, 9: 1978. (https://doi.org/10.3390/cells9091978) 2020
Inhibition of gamma-secretase promotes axon regeneration after a complete spinal cord injury
Sobrido-Cameán D., Robledo D., Romaus-Sanjurjo D., Pérez-Cedrón V., Sánchez L., Rodicio M.C. & Barrerio-Iglesias A.
Frontiers in Cell & Developmental Biology, 8:173. (doi: 10.3389/fcell.2020.00173) 2020
Looking for a better characterization of triple-negative breast cancer by means of circulating tumor cells
Abreu M., Cabezas-Sáinz P., Pereira-Veiga T., Falo C., Abalo A., Morilla I., Curiel J., Cueva, J., Rodríguez C., Varela-Pose V., Lago-Lestón R., Mondelo P., Palacios P., Moreno-Bueno G., Cano A., García-Caballero T., Pujana M.A., Sánchez-Piñón L., Costa C., López R. & Muinelo-Romay L.
Journal of Clinical Medicine, 9: 353 (doi.org/10.3390/jcm9020353) 2020
Acetaminophen affects the survivor, pigmentation and development of craniofacial structures in zebrafish (Danio rerio) embryos
Cedrón V.P., Weiner A., Vera M. & Sánchez L.
Biochemical Pharmacology, 174: 113816 (doi.org/10.1016/j.bcp.2020.113816) 2020
Cell senescence contributes to tissue regeneration in zebrafish.
Da Silva-Álvarez S., Guerra-Varela J., Barreiro-Iglesias A., Sánchez L. & Collado M.
Aging Cell, 19: e13052 (doi.org/10.1111/acel.13052) 2020
Danio rerio as model organism for adenoviral vector evaluation
Gulías P., Guerra-Varela J., González-Aparicio M., Ricobaraza A., Vales A., González-Aseguinolaza G., Hernández-Alcoceba R. & Sánchez L.
Genes, 10: 1053 (doi: 10.3390/genes10121053) 2019
The development of cell senescence
Da Silva-Álvarez S., Picallos-Rabina p., Antelo-Iglesias L., Triana-Martínez F., Barreiro-Iglesias A., Sánchez l.E. & Collado M.
Experimental Gerontology, 128: 110742 (doi.org/10.1016/j.exger.2019.110742) 2019
The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish.
Crecente-Campo J., Guerra-Varela J., Peleteiro M., Gutiérrez-Lovera C., Fernández-Mariño I., Diéguez-Docampo A., González-Fernández A., Sánchez L. & Alonso M.J.
Journal of Controlled Release 308: 98-108 (doi.org/10.1016/j.jconrel.2019.07.011) 2019
POU1F1 transcription factor promotes breast cancer metastasis via recruitment and polarization of macrophages.
Seoane S., Martínez-Ordóñez A., Eiro N., Cabezas-Sáinz P., García-Caballero L., González L.O., Sánchez L., Vizoso F. & Pérez-Fernández R.
Journal of Pathology, 249: 381-394 (doi: 10.1002/path.5324) 2019
In vivo toxicity assays in zebrafish embryos as a pre-requisit in a xenograft preclinical studies
Gutiérrez-Lovera C., Martínez-Val J., Cabezas-Sáinz P., López R., Rubiolo J.A. & Sánchez L.
Toxicology Mechanisms & Methods, 29: 478-487 (doi: 10.1080/15376516.2019.1611980) 2019
Serotonin inhibits axonal regeneration of identificable descending neurons after a complete spinal cord injury in lampreys
Sobrido-Cameán D., Robledo D., Sánchez L., Rodicio M.C. & Barreiro-Iglesias A.
Diseases Models and Mechanism, 12: dmm037085. (doi: 10.1242/dmm.037085) 2019
CTCs-derived xenograft development in a Triple Negative breast cancer case
Pereira-Veiga T., Abreu M., Robledo D., Matias-Guiu X., Santacana M., Sánchez L., Cueva J., Palacios P., Abdulkader I., López-López R., Muinelo-Romay L. & Costa C.
International Journal of Cancer 144: 2254-2265. (doi: 10.1002/ijc.32001)2019
Glycosylated cell penetrating peptides GCPPs.
Gallego I., Rioboo A., Reina J.J., Díaz B., Canales-Mayordomo A., Cañada J., Guerra-Varela J., Sánchez L. & Montenegro J.
ChemBiochem, 20: 1400-1409 (doi.org/10.1002/cbic.201800720) 2019
Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation
Ikonomopoulou M.P., Pineda S.S., Fernández-Rojo M.A., Cabezas-Sáinz P., Winnen B., Morales R.A.V., Brust A., Sánchez L.E., Alewood P., Ramm G.A., Miles J.J. & King G.F.
Scientific Reports 8: 11519. (doi: 10.1038/s41598-018-29826-4) 2018
First description of a natural infection with spleen and kidney necrosis virus in zebrafish
Bermúdez R., Losada A.P., de Azevedo A.M., Guerra-Varela J., Pérez-Fernández D., Sánchez L., Padrós F., Nowak B. & Quiroga M.I.
Journal of Fish Diseases, 41: 1283-1294 (doi: 10.1111/jfd.12822) 2018
Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis
Martínez Ordóñez-A., Seoane S., Cabezas-Sáinz P., Eiro N., Sendón-Lago J., Macía M., García Caballero T., González L.O., Sánchez L., Vizoso F. & Pérez-Fernández R.
Oncogene, 37: 1430-1444 (doi: 10.1038/s41388-017-0036-8). 2018
Susceptibility of zebrafish to Vesicular Stomatitis Virus infection
Guerra-Varela J., Baz-Martínez M., Da Silva-Álvarez S., Losada A.P., Quiroga M.I., Collado M., Rivas C. & Sánchez L.
Zebrafish, 15: 124-132 (doi: 10.1089/zeb.2017.1499). 2018
Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing proliferation index with ZFtool.
Cabezas-Sáinz P., Guerra-Varela J., Carreira M.J., Mariscal J., Roel M., Rubiolo J.A., Sciara A.A., Abal M., Botana L.M., López R. & Sánchez L.
BMC Cancer, 18:3 (10.1186/s12885-017-3919-8). 2018
Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model
Teijeiro-Valiño C., Yebra-Pimentel E., Guerra-Varela J., Csaba N., Alonso M.A. & Sánchez L.
Nanomedicine, 12: 2069-2082 (doi: 10.2217/nnm-2017-0078). 2017
Dinuclear RuII(bipy)2 derivatives: structural, biological, and in vivo zebrafish toxicity evaluation.
Lenis-Rojas O.A., Cabral R., Carvalho B., Friães S., Roma-Rodrigues C., Araujo Fernández J.A., Fernández-Vila S., Sánchez L., Gomes C.S.B., Fernandes A.R., Fernandes A.R. & Royo B. 2021. Triazole-based half-sandwich ruthenium(II) compounds: from in vitro antiproliferative potential to in vivo toxicity evaluation.
Inorganic Chemistry, 60: 8011-8026. (doi: 10.1021/acs.inorgchem.1c00527).
The potential of zebrafish for improving the translation of genetic anticancer nanomedicines
Gutiérrez-Lovera C., Vázquez-Ríos A., Guerra-Varela J., Sánchez L. & de la Fuente M.
Genes 8: 349 (doi:10.3390/genes8120349). 2017
Heteroleptic mononuclear compounds of ruthenium (II): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos.
Lenis-Rojas O.A., Fernandes A.R., Roma-Rodrigues C., Baptista P.V., Marques F., Pérez-Fernández D., Guerra-Varela J., Sánchez L., Vázquez-García D., López Torres M., Fernández A. & Fernández J.J.
Dalton Transactions, 45: 19127-19140 (doi: 10.1039/C6DT03591D). 2016
Cell senescence is an antiviral defense mechanism.
Baz-Martínez M., Da Silva-Álvarez S., Rodríguez E., Guerra J., El Motiam A., Vidal A., García-Caballero T., González-Barcia M., Sánchez L., Muñoz-Fontela C., Collado M. & Rivas C.
Scientific Reports, 6: 37007. (doi:10.1038/srep37007). 2016
Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.
Roel M., Rubiolo J.A., Guerra-Varela J., Silva Siguara B. L., Thomas O.P., Cabezas-Sainz P., López R., Sánchez L. & Botana L.M.
Oncotarget, 7: 83071-83087. (doi: 10.18632/oncotarget.13068). 2016
“A zebra in the water”: Inspiring science in Spain.
Guerra-Varela J., Cabezas-Sáinz P., Yebra-Pimentel E., Gutiérrez-Lovera C., Cedrón V.P., Otero Obarrio M.A., Sciara A.A., Rodríguez N., Araujo J., Millán A. & Sánchez L.
Zebrafish, 13(4): 241-247. (doi:10.1089/zeb.2015.1178). 2016
Light-controlled celular internalization and cytotoxicity of nucleic acid-binding agents. Studies in vitro and in zebrafish embryos.
Penas C., Sánchez M.I., Guerra-Varela J., Sánchez L., Vázquez M.E. & Mascareñas J.L.
ChemBioChem, 17: 37-41. (doi: 10.1002/cbic.201500455). 2016
Aquatic Genomics
-
Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life.
Figueras A., Robledo D., Corvelo A., Hermida M., Pereiro P., Rubiolo J. A., Gómez-Garrido J., Carreté L., Bello X., Gut M., Gut I.G., Marcet-Houben M., Forn-Cuní G., Galán B., García J.L., Abal-Fabeiro J.L., Pardo B.G., Taboada X., Fernández C., Vlasova A., Hermoso-Pulido A., Guigo R., Alvarez-Dios J. A., Gómez-Tato A., Viñas A., Maside X., Gabaldón T., Novoa B., Bouza C., Alioto T. & Martínez P.
DNA Research, 23: 181-192 (doi: 10.1093/dnares/dsw007). 2016.
Gene expression analysis at the onset of sex differentiation in turbot (Scophthalmus maximus).
Robledo D., Ribas L., Cal R., Sánchez L., Piferrer F., Martínez P. & Viñas A.
BMC Genomics, 16: 973 (doi: 10.1186/s12864-015-2142-8). 2015.
Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats.
Vera M., Bello X., Álvarez-Dios J.A., Pardo B.G., Sánchez L., Carlsson J., Carlsson J.E.L., Carolina Bartolomé C., Maside X. & Martinez P.
Marine Genomics, 24: 335-341 (doi:10.1016/j.margen.2015.08.006). 2015.
Genetic architecture of sex determination in fish: Applications to sex ratio control in aquaculture.
Martínez P., Viñas A.M., Sánchez L., Díaz N., Ribas L. & Piferrer.
Frontiers in Genetics, 5: 340 (doi: 10.3389/fgene.2014.00340). 2014.
Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset.
Robledo D., Hernández-Urcera J., Cal R.M., Pardo B.G., Sánchez L., Martínez P. & Viñas A.
BMC Genomics, 15: 648 (doi: 10.1186/1471-2164-15-648). 2014.
A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus).
Vale L., Diéguez R., Sánchez L., Martínez, P. & Viñas A. 2014
Molecular Biology Reports, 41: 1501-1509 (doi: 10.1007/s11033-013-2995-3). 2014.